Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Curr Opin Gastroenterol ; 38(6): 555-561, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2259575

ABSTRACT

PURPOSE OF REVIEW: A large and growing number of patients have persistent gastrointestinal symptoms that they attribute to COVID-19. SARS-CoV-2, the virus that causes COVID-19, replicates within the gut and acute COVID-19 is associated with alteration of the gut microbiome. This article reviews recent observational data related to gastrointestinal symptoms in 'long COVID' and discusses pathophysiologic mechanisms that might explain persistent post-COVID gastrointestinal symptoms. RECENT FINDINGS: Gastrointestinal symptoms are present in half of the patients with acute COVID-19, persist 6 months after COVID-19 in 10-25% of patients, and are rated as the most bothersome symptom in 11% of all patients. These symptoms include heartburn, constipation, diarrhoea and abdominal pain and decline in prevalence with the passage of time. Long COVID gastrointestinal symptoms are associated with mental health symptoms (anxiety and depression) that predate COVID-19 and also with mental health symptoms that are concurrent, after recovery from COVID-19. The cause of long COVID gastrointestinal symptoms is unknown and hypotheses include the SARS-CoV-2 virus itself, which infects the gastrointestinal tract; COVID-19, which can be accompanied by gut microbiome changes, a profound systemic inflammatory response and critical illness; and/or effects of pandemic stress on gastrointestinal function and symptom perception, which may be unrelated to either SARS-CoV-2 or to COVID-19. SUMMARY: New, persistent gastrointestinal symptoms are commonly reported after recovery from COVID-19. The pathophysiology of these symptoms is unknown but likely to be multifactorial.


Subject(s)
COVID-19 , Gastrointestinal Diseases , COVID-19/complications , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/etiology , Humans , Pandemics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.25.22282730

ABSTRACT

Background: SARS-CoV-2 transmission frequently occurs within households, yet few studies describe which household contacts and household units are most likely to engage in transmission-interrupting behaviors. Methods: We analyzed a COVID-19 prospective household transmission cohort in North Carolina (April-Oct 2020) to quantify changes in physical distancing behaviors among household contacts over 14 days. We evaluated which household contacts were most likely to ever mask at home and to ever share a bedroom with the index case between Days 7-14. Results: In the presence of a household COVID-19 infection, 24% of household contacts reported ever masking at home during the week before study entry. Masking in the home between Days 7-14 was reported by 26% of household contacts, and was more likely for participants who observed their household index case wearing a mask. Participants of color and participants in high-density households were more likely to mask at home. After adjusting for race/ethnicity, living density was not as clearly associated with masking. Symptomatic household contacts were more likely to share a bedroom with the index case. Working individuals and those with comorbidities avoided sharing a bedroom with the index case. Conclusion: In-home masking during household exposure to COVID-19 was infrequent in 2020. In light of ongoing transmission of SARS-CoV-2, these findings underscore a need for health campaigns to increase the feasibility and social desirability of in-home masking among exposed household members. Joint messaging on social responsibility and prevention of breakthrough infections, reinfections, and long COVID-19 may help motivate transmission-interruption behaviors.


Subject(s)
COVID-19 , Breakthrough Pain
3.
Clin Transl Gastroenterol ; 13(10): e00524, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2025671

ABSTRACT

INTRODUCTION: An estimated 15%-29% of patients report new gastrointestinal (GI) symptoms after coronavirus-19 disease (COVID-19) while 4%-31% report new depressive symptoms. These symptoms may be secondary to gut microbiome tryptophan metabolism and 5-hydroxytryptamine (5-HT)-based signaling. METHODS: This study used specimens from 2 patient cohorts: (i) fecal samples from patients with acute COVID-19 who participated in a randomized controlled trial testing prebiotic fiber and (ii) blood samples from patients with acute COVID-19. Six months after recovering from COVID-19, both cohorts answered questions related to GI symptoms and anxiety or depression. Microbiome composition and function, focusing on tryptophan metabolism-associated pathways, and plasma 5-HT were assessed. RESULTS: In the first cohort (n = 13), gut microbiome L-tryptophan biosynthesis during acute COVID-19 was decreased among those who developed more severe GI symptoms (2.0-fold lower log activity comparing those with the most severe GI symptoms vs those with no symptoms, P = 0.06). All tryptophan pathways showed decreased activity among those with more GI symptoms. The same pathways were also decreased in those with the most severe mental health symptoms after COVID-19. In an untargeted analysis, 5 additional metabolic pathways significantly differed based on subsequent development of GI symptoms. In the second cohort (n = 39), plasma 5-HT concentration at the time of COVID-19 was increased 5.1-fold in those with GI symptoms alone compared with those with mental health symptoms alone ( P = 0.02). DISCUSSION: Acute gut microbiome-mediated reduction in 5-HT signaling may contribute to long-term GI and mental health symptoms after COVID-19. Future studies should explore modification of 5-HT signaling to reduce post-COVID symptoms.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Gastrointestinal Microbiome , Humans , Tryptophan , Serotonin/metabolism , COVID-19/complications , Mental Health , Gastrointestinal Diseases/etiology
4.
Theranostics ; 12(1): 324-339, 2022.
Article in English | MEDLINE | ID: covidwho-1512992

ABSTRACT

Background: Macrophage infiltration around lipotoxic tubular epithelial cells (TECs) is a hallmark of diabetic nephropathy (DN). However, how these two types of cells communicate remains obscure. We previously demonstrated that LRG1 was elevated in the process of kidney injury. Here, we demonstrated that macrophage-derived, LRG1-enriched extracellular vesicles (EVs) exacerbated DN. Methods: We induced an experimental T2DM mouse model with a HFD diet for four months. Renal primary epithelial cells and macrophage-derived EVs were isolated from T2D mice by differential ultracentrifugation. To investigate whether lipotoxic TEC-derived EV (EVe) activate macrophages, mouse bone marrow-derived macrophages (BMDMs) were incubated with EVe. To investigate whether activated macrophage-derived EVs (EVm) induce lipotoxic TEC apoptosis, EVm were cocultured with primary renal tubular epithelial cells. Subsequently, we evaluated the effect of LRG1 in EVe by investigating the apoptosis mechanism. Results: We demonstrated that incubation of primary TECs of DN or HK-2 mTECs with lysophosphatidyl choline (LPC) increased the release of EVe. Interestingly, TEC-derived EVe activated an inflammatory phenotype in macrophages and induced the release of macrophage-derived EVm. Furthermore, EVm could induce apoptosis in TECs injured by LPC. Importantly, we found that leucine-rich α-2-glycoprotein 1 (LRG1)-enriched EVe activated macrophages via a TGFßR1-dependent process and that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-enriched EVm induced apoptosis in injured TECs via a death receptor 5 (DR5)-dependent process. Conclusion: Our findings indicated a novel cell communication mechanism between tubular epithelial cells and macrophages in DN, which could be a potential therapeutic target.


Subject(s)
Diabetes Mellitus/metabolism , Diabetic Nephropathies/metabolism , Epithelial Cells/metabolism , Macrophages/metabolism , Animals , Apoptosis , Cell Communication , Cell Line , Epithelial Cells/pathology , Macrophages/pathology , Mice , Mice, Inbred C57BL
5.
Cell Res ; 31(8): 836-846, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275907

ABSTRACT

Severe COVID-19 disease caused by SARS-CoV-2 is frequently accompanied by dysfunction of the lungs and extrapulmonary organs. However, the organotropism of SARS-CoV-2 and the port of virus entry for systemic dissemination remain largely unknown. We profiled 26 COVID-19 autopsy cases from four cohorts in Wuhan, China, and determined the systemic distribution of SARS-CoV-2. SARS-CoV-2 was detected in the lungs and multiple extrapulmonary organs of critically ill COVID-19 patients up to 67 days after symptom onset. Based on organotropism and pathological features of the patients, COVID-19 was divided into viral intrapulmonary and systemic subtypes. In patients with systemic viral distribution, SARS-CoV-2 was detected in monocytes, macrophages, and vascular endothelia at blood-air barrier, blood-testis barrier, and filtration barrier. Critically ill patients with long disease duration showed decreased pulmonary cell proliferation, reduced viral RNA, and marked fibrosis in the lungs. Permanent SARS-CoV-2 presence and tissue injuries in the lungs and extrapulmonary organs suggest direct viral invasion as a mechanism of pathogenicity in critically ill patients. SARS-CoV-2 may hijack monocytes, macrophages, and vascular endothelia at physiological barriers as the ports of entry for systemic dissemination. Our study thus delineates systemic pathological features of SARS-CoV-2 infection, which sheds light on the development of novel COVID-19 treatment.


Subject(s)
COVID-19/pathology , Lung/virology , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Autopsy , COVID-19/virology , China , Cohort Studies , Critical Illness , Female , Fibrosis , Hospitalization , Humans , Kidney/pathology , Kidney/virology , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Lung/pathology , Male , Middle Aged , RNA, Viral/metabolism , SARS-CoV-2/genetics , Spleen/pathology , Spleen/virology , Trachea/pathology , Trachea/virology
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.10.21253173

ABSTRACT

Background Few prospective studies of SARS-CoV-2 transmission within households have been reported from the United States, where COVID-19 cases are the highest in the world and the pandemic has had disproportionate impact on communities of color. Methods and Findings This is a prospective observational study. Between April-October 2020, the UNC CO-HOST study enrolled 102 COVID-positive persons and 213 of their household members across the Piedmont region of North Carolina, including 45% who identified as Hispanic/Latinx or non-white. Households were enrolled a median of 6 days from onset of symptoms in the index case. Secondary cases within the household were detected either by PCR of a nasopharyngeal (NP) swab on study day 1 and weekly nasal swabs (days 7, 14, 21) thereafter, or based on seroconversion by day 28. After excluding household contacts exposed at the same time as the index case, the secondary attack rate (SAR) among susceptible household contacts was 60% (106/176, 95% CI 53%-67%). The majority of secondary cases were already infected at study enrollment (73/106), while 33 were observed during study follow-up. Despite the potential for continuous exposure and sequential transmission over time, 93% (84/90, 95% CI 86%-97%) of PCR-positive secondary cases were detected within 14 days of symptom onset in the index case, while 83% were detected within 10 days. Index cases with high NP viral load (>10^6 viral copies/ul) at enrollment were more likely to transmit virus to household contacts during the study (OR 4.9, 95% CI 1.3-18 p=0.02). Furthermore, NP viral load was correlated within families (ICC=0.44, 95% CI 0.26-0.60), meaning persons in the same household were more likely to have similar viral loads, suggesting an inoculum effect. High household living density was associated with a higher risk of secondary household transmission (OR 5.8, 95% CI 1.3-55) for households with >3 persons occupying <6 rooms (SAR=91%, 95% CI 71-98%). Index cases who self-identified as Hispanic/Latinx or non-white were more likely to experience a high living density and transmit virus to a household member, translating into an SAR in minority households of 70%, versus 52% in white households (p=0.05). Conclusions SARS-CoV-2 transmits early and often among household members. Risk for spread and subsequent disease is elevated in high-inoculum households with limited living space. Very high infection rates due to household crowding likely contribute to the increased incidence of SARS-CoV-2 infection and morbidity observed among racial and ethnic minorities in the US. Quarantine for 14 days from symptom onset of the first case in the household is appropriate to prevent onward transmission from the household. Ultimately, primary prevention through equitable distribution of effective vaccines is of paramount importance.


Subject(s)
COVID-19 , Infections
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.18.21251999

ABSTRACT

Background: Standard nasopharyngeal swab testing for SARS-CoV-2 detection by PCR is not always feasible due to limitations in trained personnel, personal protective equipment, swabs, PCR reagents, and access to cold chain and biosafety hoods. Methods: We piloted the collection of nasal mid-turbinate swabs amenable to self-testing, including both standard polyester flocked swabs as well as 3D printed plastic lattice swabs, placed into either viral transport media or an RNA stabilization agent. Quantitative SARS-CoV-2 viral detection by RT-qPCR was compared to that obtained by nasopharyngeal sampling as the reference standard. Pooling specimens in the lab versus pooling swabs at the point of collection was also evaluated. Results: Among 275 participants, flocked nasal swabs identified 104/121 individuals who were PCR-positive for SARS-CoV-2 by nasopharyngeal sampling (sensitivity 87%, 95% CI 79-92%), mostly missing those with low viral load (<10^3 viral copies/uL). 3D-printed nasal swabs showed similar sensitivity. When nasal swabs were placed directly into an RNA stabilizer, the mean 1.4 log decrease in viral copies/uL compared to nasopharyngeal samples was reduced to <1 log, even when samples were left at room temperature for up to 7 days. Pooling sample specimens or swabs both successfully detected samples >102 viral copies/uL. Conclusions: Nasal swabs are likely adequate for clinical diagnosis of acute infections to help expand testing capacity in resource-constrained settings. When collected into an RNA preservative that also inactivates infectious virus, nasal swabs yielded quantitative viral loads approximating those obtained by nasopharyngeal sampling.


Subject(s)
Acute Disease
SELECTION OF CITATIONS
SEARCH DETAIL